

Energo24.ru

ТРАНСФОРМАТОРЫ КОМБИНИРОВАННЫЕ ЗНТОЛП-НТЗ

0.HT3.142.020 P3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

173008, РФ, г. Великий Новгород, ул. Северная, д.19, Телефон: +7(495)118-40-29 E-mail:<u>info@energo24.ru</u>, www.energo24.ru

СОДЕРЖАНИЕ

введение	3
1 НАЗНАЧЕНИЕ	3
2 ТЕХНИЧЕСКИЕ ДАННЫЕ	4
3 УСТРОЙСТВО	6
4 РАЗМЕЩЕНИЕ И МОНТАЖ	7
5 МАРКИРОВКА	8
6 МЕРЫ БЕЗОПАСНОСТИ	8
7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	8
8 УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	10
9 УСЛОВНОЕ ОБОЗНАЧЕНИЕ ТРАНСФОРМАТОРА	11
10 ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ	12
ПРИЛОЖЕНИЕ А (Габаритные, установочные и	
присоединительные размеры трансформаторов)	13
ПРИЛОЖЕНИЕ Б (Схема электрическая принципиальная)	15
ПРИЛОЖЕНИЕ В (Схемы строповки)	16

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с конструкцией и техническими характеристиками, а также содержит сведения по транспортированию, хранению, монтажу и эксплуатации комбинированных трансформаторов ЗНТОЛП-НТ3-6, ЗНТОЛП-НТ3-10.

В дополнение к настоящему руководству по эксплуатации следует пользоваться паспортом на трансформаторы 0.НТЗ.486.020 ПС.

1 НАЗНАЧЕНИЕ

- 1.1 Комбинированные трансформаторы ЗНТОЛП-НТЗ-6, ЗНТОЛП-НТЗ-10 (именуемые в дальнейшем «трансформаторы») обеспечивают передачу сигнала измерительной информации приборам измерения, устройствам защиты, сигнализации, автоматики и управления, и предназначены для использования в цепях коммерческого и технического учетов электроэнергии в электрических установках переменного тока на класс напряжения до 6 кВ (ЗНТОЛП-НТЗ-6) и до 10 кВ (ЗНТОЛП-НТЗ-10).
- 1.2 Трансформаторы предназначены для установки в комплектные распределительные устройства (КРУ) внутренней установки, в сборные камеры одностороннего обслуживания (КСО), в другие электроустановки и являются комплектующими изделиями.
- 1.3 Трансформаторы изготавливаются в климатическом исполнении «УХЛ» и «Т» категории размещения 2 по ГОСТ 15150 и предназначены для работы в следующих условиях:
- верхнее значение температуры окружающего воздуха при эксплуатации с учетом перегрева внутри ячейки для исполнения «УХЛ» плюс 55 $^{\circ}$ С, для исполнения «Т» плюс 60 $^{\circ}$ С;
- нижнее значение температуры окружающего воздуха для исполнения «УХЛ» минус 60 °C, для исполнения «Т» минус 10 °C;
- относительная влажность воздуха 100% при плюс 25 °C для исполнения «УХЛ», при плюс 35 °C для исполнения «Т»;
 - высота над уровнем моря не более 1000 м;
- окружающая среда невзрывоопасная; не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы атмосфера типа II по ГОСТ 15150;
 - положение трансформаторов в пространстве любое.
- 1.4 Трансформаторы, предназначенные для использования в системах нормальной эксплуатации атомных станций (именуемых в дальнейшем АС), относятся к классу 4 по 2.6 НП-001.
- 1.5 Трансформаторы, предназначенные для использования в системе важной для безопасности нормальной эксплуатации АС, относятся к классу 3 и имеют классификационное обозначение 3H по 2.6 НП-001.
- 1.6 Трансформаторы, предназначенные для использования в системе безопасности АС, относятся к классу 2 и имеют классификационное обозначение 2О по 2.6 НП-001.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1 Основные технические данные трансформаторов приведены в таблицах 1, 2 и 3. Конкретные значения технических характеристик определяются после запроса и указываются в паспорте на трансформатор.

Таблица 1 - Основные технические данные трансформаторов напряжения в составе

комбинированных трансформаторов

	Значение параметра ЗНТОЛП-НТЗ-6(10)		
Наименование параметра			
Класс напряжения, кВ	6	10	
Наибольшее рабочее напряжение, кВ	7,2	12	
Номинальное напряжение первичной обмотки, кВ	3/v3; 3,3/v3; 6/v3; 6,3/v3; 6,6/v3; 6,9/v3 ¹⁾	10/v3; 10,5/v3; 11/v3 ¹⁾	
Номинальное напряжение основной вторичной обмотки, В	100/v3; 110/v3; 120/v3; 127/v3; 200/v3; 220/v3; 100; 110; 120; 127; 200; 220 ¹⁾		
Номинальное напряжение дополнительной вторичной обмотки, В	100/3; 110/3; 120/3; 127/3; 200/3; 220/3; 100; 110; 120; 127; 200; 220 ¹⁾		
Класс точности основной вторичной обмотки	0.2; 0.5; 1.0; 3.0		
Номинальная мощность основной вторичной обмотки, ВА	см. таблицу 2 ¹⁾		
Класс точности дополнительной вторичной обмотки	3.0; 3P; 6P		
Номинальная мощность дополнительной вторичной обмотки,В·А	30; 50; 75; 100; 150; 200; 300 ¹⁾		
Предельная мощность вне класса точности, ВА	400		
Номинальная частота, Гц	50 или 60 ²⁾		
Группа соединения обмоток - с одной вторичной обмоткой	1/1-0		
- с двумя вторичными обмотками 1) По требованию заказими трансформато	1/1/1-0-0		

¹⁾ По требованию заказчика трансформаторы могут быть изготовлены с другими номинальными значениями.

Таблица 2 - Диапазон значений номинальных мощностей вторичных обмоток трансформаторов напряжения в составе комбинированных трансформаторов

Класс точности	Класс	Номинальная мощность	Суммарная мощность
первой основной	точности второй	основной вторичной	основных вторичных
вторичной	основной вторичной	обмотки при заданном	обмоток при заданном
обмотки	обмотки	классе точности, ВА	классе точности, ВА
		одна обмотка	две обмотки
0.2	0.2(0.5;1.0;3.0)	5-40	10-40
0.5	0.5(1.0;3.0)	10-100	20-100
1.0	1.0(3.0)	20-200	50-200
3.0	3.0	100-300	150-300

 $^{^{2)}}$ Для экспортных поставок.

Таблица 3 - Основные технические данные трансформаторов тока в составе комбинированных трансформаторов

Наименование параметра	Значение параметра
Номинальное напряжение, кВ	10
Наибольшее рабочее напряжение, кВ	12
Номинальный первичный ток, А	5 – 400
Номинальный вторичный ток, А	1, 5
Номинальная частота, Гц	50 или 60 ¹⁾
Номинальные вторичные нагрузки, B·A, вторичных	
обмоток:	
- для измерений и учета при cos φ ₂ = 1	1; 2; 2,5
- для измерений, учета и защиты при cos φ ₂ = 0,8	3; 5; 7,5; 10; 12,5; 15
Класс точности ²⁾ вторичных обмоток:	
- для измерений и учета	0,2S; 0,2; 0,5S; 0,5
- для защиты	5P; 10P
Номинальный коэффициент безопасности приборов	
К _{Бном} (Fs) вторичной обмотки для измерений, не	5; 10
более	
Номинальная предельная кратность К _{ном} вторичной	10, 15, 20
обмотки для защиты, не менее	10; 15; 20

¹⁾ Для экспортных поставок.

2.2 Допустимый односекундный ток термической стойкости трансформаторов в зависимости от номинального тока приведён в таблице 4.

Таблица 4 – Допустимый односекундный ток термической стойкости трансформаторов тока в составе комбинированных трансформаторов

Номинальный первичный ток, А	Односекундный ток термической стойкости, кА	Номинальный первичный ток, А	Односекундный ток термической стойкости, кА
5	0,5 – 2	40	5 – 16
10	1-5	50	5 – 20
15	1,6 – 5	75, 80, 100	10 – 20
20	2 – 10	150	16 – 20
30	5 – 12,5	200, 250, 300, 400	20

2.3 Односекундный ток термической стойкости, соответствующие ему трехсекундный ток термической стойкости и ток электродинамической стойкости указаны в таблице 5.

²⁾ Трансформаторы изготавливаются с одной вторичной обмоткой, имеющей одно значение класса точности и одно соответствующее ему значение номинальной мощности, в соответствии с заказом.

Таблица 5 — Соответствие токов K3 трансформаторов тока в составе комбинированных трансформаторов

Односекунд- ный ток тер- мической стойкости,	Трехсекунд- ный ток тер- мической стойкости,	Ток электро- динамиче- ской стой- кости, кА	Односекунд- ный ток тер- мической стойкости,	Трехсекунд- ный ток тер- мической стойкости,	Ток электро- динамиче- ской стойкости,
кА 0,5	кА 0,31	1.2	кА 10	кA	кА
1	0,62	1,3 2,5	12,5	6,25 8	25,5 31,8
1,6	1	4,1	16	10	40,7
2	1,25	5,1	20	12,5	50,9
5	3,15	12,7			

- 2.4 Трансформаторы выполняются с двумя уровнями изоляции «а» или «б» по ГОСТ 1516.3.
- 2.5 Уровень частичных разрядов (ЧР) изоляции первичной обмотки трансформаторов не превышает значений, указанных в таблице 6.

Таблица 6 – Уровень частичных разрядов изоляции первичной обмотки

Класс напряжения, кВ	Напряжения измерения ЧР, кВ	Допускаемый уровень ЧР, пКл
6	7,2	50
0	4,6	20
10	12	50
10	7,7	20

- 2.6 Класс нагревостойкости трансформаторов «В» по ГОСТ 8865.
- 2.7 Трансформаторы, работающие в системе с изолированной нейтралью без автоматического отключения при замыкании на землю, должны выдерживать в течении 8 часов приложенное напряжение равное 1,9·Uном, согласно ГОСТ 1983.

з устройство

- 3.1 Трансформаторы изготовлены в виде опорной конструкции и состоят из трансформатора тока и заземляемого трансформатора напряжения выполненных в одном корпусе. Корпус трансформаторов выполнен из эпоксидного компаунда, который одновременно является главной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.
- 3.2 Габаритные, установочные и присоединительные размеры трансформаторов приведены в приложении А. Принципиальные электрические схемы соединения обмоток трансформаторов приведены в приложении Б.
- 3.3 Выводы первичной обмотки «Л1/А», «Л2» расположены на верхней поверхности трансформаторов. Заземляемый вывод «Х» и выводы вторичных обмоток расположены в нижней части трансформаторов и имеют следующие варианты исполнений:
 - А параллельно установочной поверхности;

- С из гибкого провода, параллельно установочной поверхности.
- 3.4 Трансформаторы, имеющие в своем обозначении букву «К», изготавливаются с ответвлением (отпайкой) на вторичной обмотке трансформатора тока.
- 3.5 Для исполнений с меньшим числом вторичных обмоток отверстия несуществующих вторичных выводов заглушены.
- 3.5 На трансформаторы устанавливаются прозрачные крышки с возможностью пломбирования с целью исключения несанкционированного доступа к вторичным выводам, за исключением варианта исполнения «С». Для варианта исполнения «С» длина гибких выводов согласно заказу, но не менее 100 мм.
- 3.6 По специальному требованию заказчика возможно изготовление трансформаторов с другими установочными размерами.

4 РАЗМЕЩЕНИЕ И МОНТАЖ

- 4.1 Крепление трансформаторов на месте установки производится с помощью болтов M12 к закладным специальным гайкам, расположенным на опорной поверхности трансформаторов.
- 4.2 Провода, присоединяемые к вторичным выводам трансформаторов, должны быть снабжены наконечниками или свернуты в кольцо под винт М6 и облужены. При монтаже следует учитывать, что при направлении тока в первичной цепи от «Л1/А» к «Л2» вторичный ток во внешней цепи направлен от «И1» к «И2».
- 4.3 Напряжения коротких замыканий (U_{κ}) должны быть не более значений, указанных в таблице 7.

Таблица 7 – Расчётные значения напряжения коротких замыканий

Напряжения короткого замыкания	U _{кз} , не более, %	
Класс напряжения, кВ	6	10
На основной вторичной обмотке	5,0	5,0
На дополнительной вторичной обмотке 6,5		6,5

- 4.4 При монтаже следует соблюдать требования ГОСТ 10434 для контактных соединений по моменту затяжки:
 - для M6 − (2,5±0,5) H·м;
 - для М10 (30±1,5) H⋅м;
 - для M12 − (40±2) H·м;
 - для M20 − (30±1,5) H·м.

Для крепёжных элементов момент затяжки:

- для M4 (0,4±0,1) H·м;
- для M12 (30±1) H·м.
- 4.5 В случае неиспользования вторичной обмотки трансформаторов необходимо произвести соединение одного из выводов этой вторичной обмотки с заземляющим устройством по требованию 3.4.24 ПУЭ.
- 4.6 Категорически запрещается включение трансформаторов без заземления вывода «Х».

5 МАРКИРОВКА

- 5.1 Трансформаторы имеют табличку технических данных, выполненную по ГОСТ 7746, ГОСТ 1983 и табличку с предупреждающей надписью о высоком напряжении на выводах разомкнутых вторичных обмоток.
- 5.2 Маркировка первичных обмоток «Л1/А», «Л2», «Х» и вторичных обмоток «И1», «И2», «И3», « a_1 », « x_1 », « a_2 », « x_2 », « a_4 », « x_4 » выполнена методом литья на корпусе или методом липкой аппликации.
- 5.3 Маркировка транспортной тары по ГОСТ 14192 нанесена непосредственно на тару.

6 МЕРЫ БЕЗОПАСНОСТИ

- 6.1 Конструкция, монтаж и эксплуатация трансформаторов должны соответствовать требованиям безопасности по ГОСТ 12.2.007.0 и ГОСТ 12.2.007.3, «Правил технической эксплуатации электроустановок потребителей», «Правил технической эксплуатации электрических станций и сетей Российской Федерации», «Правил устройства электроустановок» и «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок».
- 6.2 Не допускается производить какие-либо переключения во вторичных цепях трансформаторов, не убедившись в том, что напряжение с первичной обмотки снято. В процессе испытаний и эксплуатации должна быть исключена возможность размыкания вторичных цепей трансформатора тока.
- 6.3 Для исполнений с ответвлением вторичной обмотки трансформаторов тока подключение должно производиться к используемым ответвлениям. При этом запрещается использование ответвления на номинальный первичный ток меньшего значения, чем ток, протекающий по первичной цепи. Остальные ответвления вторичной обмотки не закорачиваются и не заземляются.
- 6.4 Категорически запрещается проведение испытаний и эксплуатация трансформаторов без заземления вывода «Х».

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 При техническом обслуживании трансформаторов необходимо соблюдать правила раздела «Меры безопасности».
- 7.2 Техническое обслуживание проводится в сроки, предусмотренные для технического обслуживания электроустановки, в которую встраиваются трансформаторы.
 - 7.3 Техническое обслуживание проводится в следующем объеме:
 - 7.3.1 Внешний осмотр трансформаторов на отсутствие повреждений.
- 7.3.2 Очистка поверхности трансформаторов от пыли и грязи. Снятие окисной пленки с первичных и вторичных контактов.
- 7.3.3 Измерение электрического сопротивления изоляции обмоток трансформаторов относительно металлических деталей крепления к заземленной конструкции и между обмотками производится мегомметром на 1000 В.

Сопротивление при нормальных климатических условиях должно быть не менее: 1000 МОм – для первичной обмотки; 50 МОм – для вторичных обмоток.

- 7.3.4 Испытание электрической прочности изоляции вторичных обмоток и заземляемого вывода «Х» первичной обмотки трансформаторов относительно земли и других обмоток проводится приложенным одноминутным напряжением промышленной частоты, равным 3 кВ.
- 7.3.5 Испытание электрической прочности изоляции первичной обмотки трансформатора напряжения, входящего в комбинированный трансформатор.

Испытание электрической прочности изоляции первичной обмотки трансформаторов проводят в следующем порядке:

Испытательное напряжение частотой 150-400 Гц подается на вывод «Л1/А» первичной обмотки. При этом вторичные выводы «И1», «И2», «И3», « x_1 », « x_2 », « x_4 », вывод «Х» первичной обмотки и металлические части трансформатора должны быть заземлены. Напряжение, значение которого приведено в таблице 8, выдерживается в течение времени t, c, рассчитанного по формуле (1):

$$t = \frac{2 \cdot f_{\text{HOM}}}{f_{\text{MCII}}} \cdot 60, \quad (1)$$

где:

t – время выдержки испытательного напряжения, с;

 f_{HOM} — номинальная частота, Гц;

 $f_{исп}$ — испытательная частота, Гц.

Таблица 8 – Допустимые испытательные напряжения при частоте 150-400 Гц

Класс напряжения, кВ	Испытательные напряжения, кВ
6	28,8
10	37,8

Допускается проводить данное испытание индуктированным напряжением частотой 150-400 Гц со стороны вторичной обмотки « a_1 », « x_1 ». Значение напряжения, подаваемого на вторичную обмотку, рассчитывается делением испытательного напряжения из таблицы 8 на коэффициент трансформации.

Примечание — При отсутствии у потребителя источника напряжения повышенной частоты испытание трансформаторов допускается проводить при частоте 50 Гц напряжением $1,9\cdot U_{\text{ном}}$ при длительности выдержки 1 мин. В течении всего испытания не должно происходить резких изменений тока, в частности - его увеличения.

Таблица 7 – Допустимые испытательные напряжения при частоте 50 Гц

Номинальное	Наибольшее рабочее	Напряжение в	Напряжение в
напряжение	напряжение	первичной обмотке	первичной обмотке
первичной обмотки	первичной обмотки	при 1,9·U _{ном} , В	при U _{н.Р} ∙√3, В
(U _{ном}), В	(U _{H.P}), B		
6000/√3 (3468)	4162	6600	7200
10000/√3 (5780)	6936	11000	12000

ВНИМАНИЕ! При испытании электрической прочности изоляции первичной обмотки вывод «Х» первичной обмотки испытуемого трансформатора должен быть надежно заземлен.

- 7.3.6 Измерение сопротивления обмоток трансформаторов постоянному току производится мостом постоянного тока, либо другим прибором измерения, имеющего класс точности не ниже 1. Измеренное значение сопротивления не должно отличаться от указанного в паспорте более, чем на 2 %.
- 7.3.7 Измерение тока и потерь холостого хода трансформаторов. Измерение тока холостого хода проводится при напряжении $1,0\cdot U_{\text{ном}}$ и $1,9\cdot U_{\text{ном}}$ по методике ГОСТ 3484.1.

Напряжение подаётся на выводы первой основной вторичной обмотки « a_1 », « x_1 », при этом выводы остальных вторичных обмоток разомкнуты. При испытании должны быть надежно заземлены вывод «X» первичной обмотки и металлические элементы конструкции трансформаторов. Трансформаторы считаются выдержавшими испытание, если замеренные значения не отличаются от прописанных в паспорте на изделие не более, чем на $10\,\%$.

ВНИМАНИЕ! При замере тока холостого хода вывод «Х» первичной обмотки испытуемого трансформатора должен быть надежно заземлен.

- 7.4 Трансформаторы подлежат периодической поверке по методике ГОСТ 8.216 и ГОСТ 8.217. Межповерочный интервал 16 лет.
 - 7.5 Трансформаторы ремонту не подлежат.

Средняя наработка до отказа — 4.10^5 часов.

Средний срок службы – 30 лет.

8 УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

8.1 Трансформаторы транспортируются упакованными, уложенными и закрепленными на поддонах 800×1200 любым закрытым видом транспорта в условиях транспортирования по группе «С» согласно ГОСТ 23216.

Установка поддонов с трансформаторами в несколько ярусов при транспортировании и хранении категорически запрещается.

- 8.2 Условия транспортирования трансформаторов в части воздействия климатических факторов по группе условий хранения 5 или 6 ГОСТ 15150 для исполнений «УХЛ» или «Т» соответственно.
- 8.3 Консервация трансформаторов производится только для изделий климатического исполнения «Т», а также по требованиям заказчика.
- 8.4 Хранение и складирование трансформаторов должно производиться в закрытых помещениях. При хранении трансформаторов должны быть приняты меры против возможных повреждений.
- 8.5 При транспортировании и хранении трансформаторов необходимо избегать резкой смены температур, особенно резкого охлаждения.
- 8.6 Схемы строповки приведены в приложении В. Стропить грузовыми стропами на текстильной основе. Допускается стропить трансформаторы за рым-болты М10, ввернутые в первичные контакты «Л1/А», «Л2».

8.7 Непосредственно перед монтажом необходимо снять окисную пленку с первичных контактов абразивной салфеткой и очистить корпус трансформаторов от пыли и влаги.

9 УСЛОВНОЕ ОБОЗНАЧЕНИЕ ТРАНСФОРМАТОРА

9.1 записи обозначения комбинированного трансформатора заземляемого, однофазного, электромагнитного, С литой изоляцией, предохранительным устройством изготовленного по ТУ 3414-009-30425794-2013, класса напряжения 10 кВ, конструктивного варианта исполнения «1», исполнения вторичных выводов расположенных параллельно установочной поверхности «А», с номинальным напряжением первичной обмотки ТН 10000/V3 В с двумя вторичными обмотками ТН (первая с номинальным напряжением 100/V3 В - для подключения цепей измерения с классом точности 0,5 и нагрузкой 75 В.А, вторая с номинальным напряжением 100/3 В - для подключения цепей защиты с классом точности 3 и нагрузкой 100 B·A) с вторичной обмоткой TT класса точности 0,5S с коэффициентом безопасности Fs10 и нагрузкой 10 В·А для коммерческого учета на номинальный первичный ток 150 А, номинальный вторичный ток 5 А, с односекундным током термической стойкости 16 кА климатического исполнения «УХЛ», категории размещения 2 по ГОСТ 15150 при его заказе и в документации другого изделия:

Комбинированный трансформатор 3HTOЛП-HT3-10-1A-10000/V3:100/V3:100/3-0.5/3/0.5SFs10-75/100/10-150/5 16 кА УХЛ2 ТУ 3414-009-30425794-2013

от 08.07.2002 г. №204

10 ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ

ГОСТ 1983–2015 ГОСТ 7746–2015 ГОСТ 8.216–2011	Трансформаторы напряжения. Общие технические условия Трансформаторы тока. Общие технические условия ГСИ. Трансформаторы напряжения. Методика поверки		
ΓΟCT 8.217-2003	ГСИ. Трансформаторы тока. Методика поверки		
ΓΟCT 12.2.007.0–75	ССБТ. Изделия электротехнические. Общие требования безопасности		
ΓΟCT 12.2.007.3-75	ССБТ. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности		
ΓΟCT 1516.3–96	Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции		
ΓΟCT 3484.1-88	Трансформаторы силовые. Методы электромагнитных испытаний		
ГОСТ 8865–93	Системы электрической изоляции. Оценка нагревостойкости и классификации		
ΓΟCT 10434-82	Соединения контактные электрические. Классификация. Общие технические требования		
ГОСТ 14192-96	Маркировка грузов		
ΓΟCT 15150–69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия		
	эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды		
ΓΟCT 23216–78	Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний		
НП-001-15	Федеральные нормы и правила в области использования атомной энергии "Общие положения обеспечения безопасности атомных станций"		
ПОТ Р М-016-2001,	Межотраслевые правила по охране труда (правила		
РД 153-34.0-03.150-00	безопасности) при эксплуатации электроустановок		
Правила технической	эксплуатации электроустановок потребителей. Утверждены		
Приказом Минэнерго России от 13.01.2003 г. №6			
Правила технической	эксплуатации электрических станций и сетей Российской		
Федерации. Утверждены Приказом Минэнерго России от 19.06.2003 г. №229			
Правила устройства электроустановок (ПУЭ). Утверждены Приказом Минэнерго России			

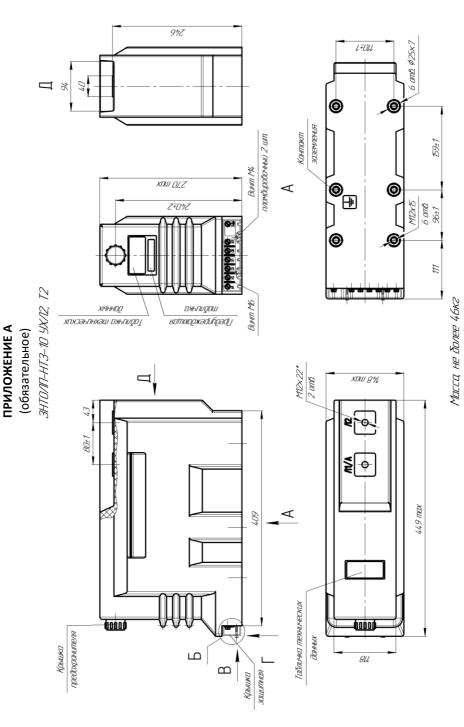


Рисунок А.1 — Габаритные, установочные, присоединительные размеры и масса трансформаторов ЗНТОЛП-НТЗ-6(10)

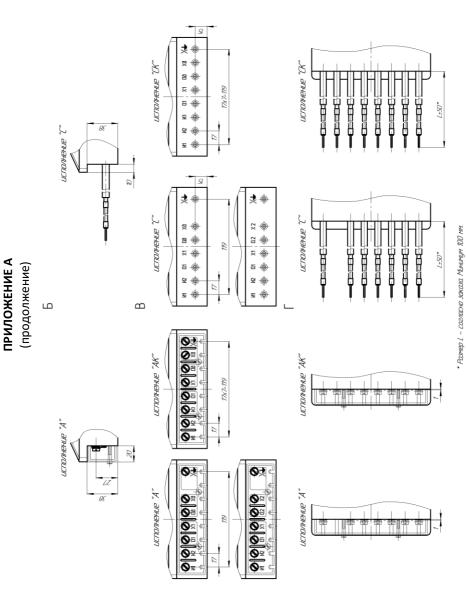


Рисунок А.2 – Варианты исполнения вторичных выводов ЗНТОЛП-НТЗ-6(10)

Приложение Б (обязательное)

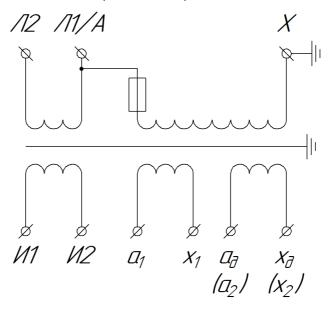


Рисунок Б.1 — Схема электрическая принципиальная для трансформаторов ЗНТОЛП-HT3-6(10)

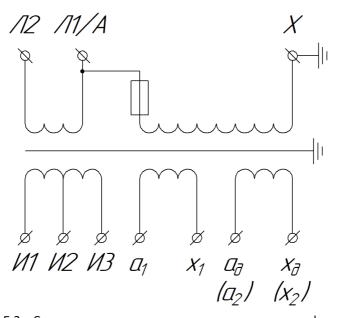


Рисунок Б.2 – Схема электрическая принципиальная для трансформаторов 3HTOЛП-HT3-6(10) с ответвлением на вторичной обмотке трансформатора тока

(обязательное) 10°-15° min 390 130±3 96±3 124±3

Приложение В

Рисунок В.1 – Схема строповки трансформаторов ЗНТОЛП-НТ3-6(10)