

Energo24.ru

согласовано:

Заместитель технического директора 000 «НТЗ «Водхов»

Бадулин Д.Н.

O7 2018

УТВЕРЖДАЮ:

Технический директор

ООО «НТЗ «Волхов»

Альбеков В.Х.

2018

ТРАНСФОРМАТОРЫ КОМБИНИРОВАННЫЕ **НТОЛП-НТ3-6(10) УХЛ2, Т2** 3НТОЛП-НТ3-6(10) УХЛ2, Т2

0.HT3.135-011 ТИ

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

СОГЛАСОВАНО:

Заместитель технического директора

ООО «НТЗ «Волхов»

Пимурзин С.Г.

2018

РАЗРАБОТАЛ:

Инженер-конструктор

ООО «НТЗ «Волхов»

___ Ефремов С.В.

2018

Содержание

Введение	3
1 Назначение	3
2 Основные технические данные	
3 Устройство	
4 Размещение и монтаж	
5 Маркировка	
6 Меры безопасности	9
7 Техническое обслуживание	9
8 Условное обозначение	. 12
Приложение А	. 13
Приложение Б	. 17

Введение

Настоящая информация предназначена для ознакомления с конструкцией и техническими характеристиками, а также содержит сведения по монтажу и эксплуатации комбинированных трансформаторов НТОЛП-НТ3-6(10) УХЛ2, Т2 и ЗНТОЛП-НТ3-6(10) УХЛ2, Т2. В дополнение к настоящей информации следует пользоваться паспортом и руководством по эксплуатации на конкретное типоисполнение трансформатора.

Все приведенные в технической информации величины справочные. Изготовитель оставляет за собой право на изменение отдельных параметров в случае изготовления специальных трансформаторов с улучшенными техническими характеристиками.

1 Назначение

Комбинированные трансформаторы НТОЛП-НТ3-6(10) УХЛ2, Т2 и ЗНТОЛП-НТ3-6(10) УХЛ2, Т2 (именуемые в дальнейшем трансформаторы) предназначены для установки в комплектные распределительные устройства (КРУ) внутренней установки, в сборные камеры одностороннего обслуживания (КСО), в другие электроустановки и являются комплектующими изделиями.

Трансформаторы обеспечивают передачу сигнала измерительной информации приборам измерения, устройствам защиты, сигнализации, автоматики и управления. Предназначены для использования в цепях коммерческого и технического учетов электроэнергии в электрических установках переменного тока на класс напряжения до 6 кВ (НТОЛП-НТ3-6, ЗНТОЛП-НТ3-6) и до 10 кВ (НТОЛП-НТ3-10, ЗНТОЛП-НТ3-10).

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» или «Т» категории размещения 2 по ГОСТ 15150-69 и предназначены для работы в следующих условиях:

- верхнее значение температуры окружающего воздуха при эксплуатации с учетом перегрева внутри ячейки для исполнения «УХЛ» плюс 55 °С, для исполнения «Т» плюс 60 °С;
- нижнее значение температуры окружающего воздуха минус 60 °C для исполнения «УХЛ», минус 10 °C для исполнения «Т»;
- относительная влажность воздуха для исполнения «УХЛ» 100 % при плюс $25 \, ^{\circ}$ С, для исполнения «Т» 100 % при плюс $35 \, ^{\circ}$ С;
- высота над уровнем моря не более 1000 м;
- окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы атмосфера типа II по ГОСТ 15150-69;
- положение трансформаторов в пространстве любое.

Трансформаторы, предназначенные для использования в системах нормальной эксплуатации атомных станций (именуемых в дальнейшем АС), относятся к классу 4 по 2.6 НП-001.

Трансформаторы, предназначенные для использования в системе важной для безопасности нормальной эксплуатации АС, относятся к классу 3 и имеют классификационное обозначение 3H по 2.6 HП-001.

Трансформаторы, предназначенные для использования в системе безопасности АС, относятся к классу 2 и имеют классификационное обозначение 20 по 2.6 НП-001.

2 Основные технические данные

Основные технические данные трансформаторов приведены в таблицах 1, 2, 3, 4 и 5. Допустимый односекундный ток термической стойкости в зависимости от номинального тока приведен в таблице 6. Односекундный ток термической стойкости, соответствующие ему трехсекундный ток термической стойкости и ток электродинамической стойкости указаны в таблице 7. Конкретные значения технических характеристик определяются после запроса и указываются в паспорте на трансформатор.

Таблица 1 - Общие технические данные трансформаторов напряжения в составе комбинированных трансформаторов НТОЛП

Наименерацие парамета	3начение	параметра	
Наименование параметра	НТОЛП-НТЗ-6(10)		
Класс напряжения, кВ	6	10	
Наибольшее рабочее напряжение, кВ	7,2	12	
Номинальное напряжение первичной обмотки, кВ	3 3,3 6 6,3 6,6 6,9 ¹⁾	10 10,5 11 ¹⁾	
Номинальное напряжение вторичной обмотки, В	100; 110; 120; 12	27; 200; 220; 230 ¹⁾	
Класс точности вторичной обмотки	0.2; 0.5; 1.0; 3.0		
Номинальная мощность вторичной обмотки, ВА	см. таблицу 2 ¹⁾		
Предельная мощность вне класса точности, ВА	4	00	
Номинальная частота, Гц	50 ил	ли 60 ²⁾	
Группа соединения обмоток			
- с одной вторичной обмоткой	1/	1–0	
- с двумя вторичными обмотками	1/1/2	1–0–0	
1) По требованию заказчика трансформаторы могу 2) Для экспортных поставок.	ут быть изготовлены с другими но	оминальными значениями.	

Таблица 2 - Диапазон значений номинальных мощностей вторичных обмоток, для соответствующих классов точности трансформаторов напряжения в составе комбинированных трансформаторов HTOЛП

Класс точности	Класс	Номинальная мощность	Суммарная мощность
первой вторичной	точности второй	вторичной обмотки при	вторичных обмоток при
обмотки	вторичной обмотки	заданном классе точности,	заданном классе
		BA	точности, ВА
		одна обмотка	две обмотки
0.2	0.2(0.5;1.0;3.0)	5-40	10-40
0.5	0.5(1.0;3.0)	10-100	20-100
1.0	1.0(3.0)	20-200	50-200
3.0	3.0	100-300	150-300

Таблица 3 - Общие технические данные трансформаторов напряжения в составе комбинированных трансформаторов ЗНТОЛП

Наименование параметра ласс напряжения, кВ	3НТОЛП-	UT2 C/40\		
ласс напряжения, кВ		3НТОЛП-НТ3-6(10)		
	6	10		
аибольшее рабочее напряжение, кВ	7,2	12		
оминальное напряжение первичной	3/v3; 3,3/v3; 6/v3; 6,3/v3;	10/√3; 10,5/√3; 11/√3 ¹⁾		
бмотки, кВ	6,6/v3; 6,9/v3 ¹⁾	10/75, 10,5/75, 11/75-		
оминальное напряжение основной	100/v3; 110/v3; 120/v3;	127/v3; 200/v3; 220/v3;		
торичной обмотки, В	230/√3; 100; 110; 120); 127; 200; 220; 230 ¹⁾		
оминальное напряжение	100/3; 110/3; 120/3; 127/3	; 200/3; 220/3; 230/3; 100		
ополнительной вторичной обмотки, В	110; 120; 127;	200; 220; 230 ¹⁾		
ласс точности основной вторичной	0.2; 0.5; 1.0; 3.0			
бмотки				
оминальная мощность основной	см. таблицу 4 ¹⁾			
торичной обмотки, ВА				
ласс точности дополнительной	3.0; 3P; 6P			
торичной обмотки	3.0; 32; 62			
оминальная мощность				
ополнительной вторичной обмотки,	30; 50; 75; 100;	: 150; 200; 300 ¹⁾		
·A				
редельная мощность вне класса	40	00		
очности, ВА	40	JU		
оминальная частота, Гц	50 ил	и 60 ²⁾		
руппа соединения обмоток				
с одной вторичной обмоткой	1/2	1–0		
с двумя вторичными обмотками	1/1/1-0-0			

Таблица 4 - Диапазон значений номинальных мощностей вторичных обмоток, для соответствующих классов точности трансформаторов напряжения в составе комбинированных трансформаторов ЗНТОЛП

Класс точности	Класс	Номинальная мощность	Суммарная мощность
первой основной	точности второй основной	основной вторичной	основных вторичных
вторичной обмотки	вторичной обмотки	обмотки при заданном	обмоток при заданном
		классе точности, ВА	классе точности, ВА
		одна обмотка	две обмотки
0.2	0.2(0.5;1.0;3.0)	5-40	10-40
0.5	0.5(1.0;3.0)	10-100	20-100
1.0	1.0(3.0)	20-200	50-200
3.0	3.0	100-300	150-300

Таблица 5 - Общие технические данные трансформаторов тока в составе комбинированных трансформаторов

Наименование параметра	Значение параметра		
Номинальное напряжение, кВ	10		
Наибольшее рабочее напряжение, кВ	12		
Номинальный первичный ток, А	5 – 400		
Номинальный вторичный ток, А	1, 5		
Номинальная частота, Гц	50 или 60 ¹⁾		
Номинальные вторичные нагрузки, В-А, вторичных			
обмоток:			
- для измерений и учета при cos φ ₂ = 1	1; 2; 2,5		
- для измерений, учета и защиты при cos φ ₂ = 0,8	3; 5; 7,5; 10; 12,5; 15		
Класс точности ²⁾ вторичных обмоток:			
- для измерений и учета	0,2S; 0,2; 0,5S; 0,5		
- для защиты 5P; 1 0P			
Номинальный коэффициент безопасности приборов Кыном			
(Fs) вторичной обмотки для измерений, не более	5; 10		
Номинальная предельная кратность К _{ном} вторичной	10; 15; 20		
обмотки для защиты, не менее			

¹⁾ Для экспортных поставок.

Таблица 6 — Допустимый односекундный ток термической стойкости трансформаторов тока в составе комбинированных трансформаторов

Номинальный первичный ток, А	Односекундный ток термической стойкости, кА	Номинальный первичный ток, А	Односекундный ток термической стойкости, кА
5	0,5 – 2	40	5 – 16
10	1-5	50	5 – 20
15	1,6 – 5	75, 80, 100	10 – 20
20	2 – 10	150	16 – 20
30	5 – 12,5	200, 250, 300, 400	20

Таблица 7 — Соответствие токов K3 трансформаторов тока в составе комбинированных трансформаторов

Односекунд- ный ток тер- мической стойкости, кА	Трехсекунд- ный ток тер- мической стойкости, кА	Ток электро- динамической стойкости, кА	Односекунд- ный ток тер- мической стойкости, кА	Трехсекунд- ный ток тер- мической стойкости, кА	Ток электро- динамической стойкости, кА
0,5	0,31	1,3	10	6,25	25,5
1	0,62	2,5	12,5	8	31,8
1,6	1	4,1	16	10	40,7
2	1,25	5,1	20	12,5	50,9
5	3,15	12,7			

²⁾ Трансформаторы изготавливаются с одной вторичной обмоткой, имеющей одно значение класса точности и одно соответствующее ему значение номинальной мощности, в соответствии с заказом.

Трансформаторы выполняются с двумя уровнями изоляции «а» или «б» по ГОСТ 1516.3-96. Уровень частичных разрядов (ЧР) изоляции первичной обмотки всех трансформаторов вне зависимости от уровня изоляции не превышает значений, указанных в таблице 8 для ЗНТОЛП и в таблице 9 для НТОЛП.

Таблица 8 – Уровень частичных разрядов изоляции первичной обмотки ЗНТОЛП

	Класс напряжения, кВ	Напряжения измерения ЧР, кВ	Допускаемый уровень ЧР, пКл
<u> </u>		7,2	50
	6	4,6	20
	10	12	50
	10	7,7	20

Таблица 9 – Уровень частичных разрядов изоляции первичной обмотки НТОЛП

Класс напряжения, кВ	Напряжения измерения ЧР, кВ	Допускаемый уровень ЧР, пКл
6	7,92	20
10	13,2	20

Класс нагревостойкости трансформатора «В» по ГОСТ 8865-93.

Трансформаторы ЗНТОЛП, работающие в системе с изолированной нейтралью без автоматического отключения при замыкании на землю, должны выдерживать в течении 8 часов приложенное напряжение равное 1,9·U_{ном}, согласно ГОСТ 1983-2015.

Более подробная информация по описанию работы в режиме ОЗЗ и причинах выхода из строя трансформаторов представлена в научной статье журнала «Энергоэксперт» №5 2017 года.

3 Устройство

Трансформаторы выполнены в виде опорной конструкции и состоят из трансформатора тока и трансформатора напряжения (НТОЛП — незаземляемого; ЗНТОЛП — заземляемого), выполненных в одном корпусе. Корпус трансформаторов выполнен из эпоксидного компаунда, который одновременно является главной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.

Выводы первичных обмоток «Л1/А», «Л2» расположены на верхней поверхности трансформаторов.

Выводы вторичных обмоток расположены в нижней части трансформатора и имеют следующие варианты исполнений:

- A параллельно установочной поверхности;
- C из гибкого провода, параллельно установочной поверхности;

Вывод «Х» первичной обмотки трансформатора напряжения НТОЛП расположен в верхней части трансформатора.

Заземляемый вывод «Х» первичной обмотки трансформатора напряжения ЗНТОЛП расположен в нижней части трансформатора рядом с выводами вторичных обмоток.

Трансформаторы, имеющие в своем обозначении букву «К», изготавливаются с ответвлением (отпайкой) на вторичной обмотке трансформатора тока.

На трансформаторы устанавливаются прозрачные крышки с возможностью пломбирования с целью исключения несанкционированного доступа к вторичным выводам, за исключением

варианта исполнения «С». Для варианта исполнения «С» длина гибких выводов согласно заказу, но не менее 100 мм.

Общий вид трансформаторов, габаритные, установочные и присоединительные размеры приведены в приложении А настоящей технической информации. Принципиальные электрические схемы соединения обмоток трансформаторов приведены в приложении Б.

По специальному требованию заказчика возможно изготовление трансформаторов с другими установочными размерами.

4 Размещение и монтаж

Крепление трансформаторов на месте установки производится с помощью болтов M12 к закладным специальным гайкам, расположенным на опорной поверхности трансформаторов.

При монтаже необходимо снять окисную пленку с поверхности первичных выводов трансформаторов и с подводящих шин абразивной салфеткой или мелкой наждачной бумагой.

При монтаже следует соблюдать требования ГОСТ 10434-82 для контактных соединений по моменту затяжки:

- для M6 (2,5±0,5) H⋅м;
- для M10 (30±1,5) H⋅м;
- для M12 (40±2) H⋅м;
- для M20 (30±1,5) H·м.

Для крепёжных элементов момент затяжки:

- для M4 − (0,4±0,1) H·м;
- для M12 (30±1) H·м.

Провода, присоединяемые к вторичным выводам трансформаторов, должны быть снабжены наконечниками или свернуты в кольцо под винт М6 и облужены. При монтаже следует учитывать, что при направлении тока в первичной цепи от «Л1/А» к «Л2» вторичный ток во внешней цепи направлен от «И1» к «И2».

Напряжения коротких замыканий (U_к) должны быть не более значений, указанных в таблице 10.

Таблица 10 – Расчётные значения напряжения коротких замыканий

Напряжения короткого замыкания	U _к , не более, %	
Класс напряжения, кВ	6	10
На основной вторичной обмотке	5,0	5,0
На дополнительной вторичной обмотке	6,5	6,5

В случае неиспользования вторичной обмотки трансформаторов напряжения ЗНТОЛП необходимо произвести соединение одного из выводов этой вторичной обмотки с заземляющим устройством по требованию п. 3.4.24 ПУЭ.

ВНИМАНИЕ! Категорически запрещается включение трансформаторов ЗНТОЛП без заземления вывода «Х».

5 Маркировка

Трансформаторы имеют табличку технических данных, выполненную по ГОСТ 7746-2015, ГОСТ 1983-2015 и табличку с предупреждающей надписью о высоком напряжении на выводах разомкнутых вторичных обмоток.

Маркировка первичных обмоток «Л1/A», «Л2», «Х» и вторичных обмоток «И1», «И2», «И3», « a_1 », « x_1 », « a_2 », « x_2 », « a_4 », « x_4 » выполнена методом литья на корпусе или методом липкой аппликации.

6 Меры безопасности

Конструкция, монтаж и эксплуатация трансформаторов должна соответствовать требованиям безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75, «Правил технической эксплуатации электроустановок потребителей», «Правил технической эксплуатации электрических станций и сетей Российской Федерации», «Правил устройства электроустановок» и «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок».

Не допускается производить какие-либо переключения во вторичных цепях трансформаторов, не убедившись в том, что напряжение с первичной обмотки снято. В процессе испытаний и эксплуатации должна быть исключена возможность размыкания вторичных цепей трансформатора тока.

Для исполнений с ответвлением вторичной обмотки трансформаторов тока подключение должно производиться к используемым ответвлениям. При этом запрещается использование ответвления на номинальный первичный ток меньшего значения, чем ток, протекающий по первичной цепи. Остальные ответвления вторичной обмотки не закорачиваются и не заземляются.

ВНИМАНИЕ! Категорически запрещается проведение испытаний и эксплуатация трансформаторов ЗНТОЛП-НТ3-6(10) без заземления вывода «Х».

7 Техническое обслуживание

При техническом обслуживании трансформаторов необходимо соблюдать правила раздела «Меры безопасности».

Техническое обслуживание проводится в сроки, предусмотренные для технического обслуживания электроустановки, в которую встраиваются трансформаторы.

Техническое обслуживание проводится в следующем объеме:

- 1) Очистка поверхности трансформаторов от пыли и грязи, снятие окисной пленки с первичных и вторичных контактов.
 - 2) Внешний осмотр трансформаторов на отсутствие повреждений.
- 3) Измерение электрического сопротивления изоляции обмоток трансформаторов относительно металлических деталей крепления к заземленной конструкции и между обмотками производится мегомметром на 1000 В. Сопротивление при нормальных климатических условиях должно быть не менее: 1000 МОм для первичной обмотки; 50 МОм для вторичных обмоток.
- 4) Испытание электрической прочности изоляции вторичных обмоток проводится одноминутным напряжением промышленной частоты, равным 3 кВ.

- 5) Испытание заземляемого вывода «Х» первичной обмотки трансформаторов ЗНТОЛП проводится одноминутным напряжением промышленной частоты, равным 3 кВ.
- 6) Испытание электрической прочности изоляции первичной обмотки трансформатора напряжения входящего в комбинированный трансформатор для ЗНТОЛП и НТОЛП проводят разными методами:
- 6.1) Испытание электрической прочности изоляции первичной обмотки комбинированных трансформаторов ЗНТОЛП проводят в следующем порядке:

Испытательное напряжение частотой 150-400 Гц подается на вывод «Л1/А» первичной обмотки. При этом вторичные вывода «И1», «И2», «И3», « x_1 », « x_2 », « x_2 », « x_4 », вывод «Х» первичной обмотки и металлические части трансформатора должны быть заземлены. Напряжение, значение которого приведено в таблице 11, выдерживается в течение времени t, c, рассчитанного по формуле:

$$t = \frac{2 \cdot f_{\text{HOM}}}{f_{\text{MCII}}} \cdot 60,$$

где $f_{\mbox{\scriptsize HOM}}$ — номинальная частота, Гц; $f_{\mbox{\tiny ИСП}}$ — испытательная частота, Гц.

Таблица 11 – Допустимые испытательные напряжения при частоте 150-400 Гц

Класс напряжения, кВ	Испытательные напряжения, кВ
6	28,8
10	37,8

Допускается проводить данное испытание индуктированным напряжением частотой 150-400 Гц со стороны вторичной обмотки (a_1) , (x_1) . Значение напряжения, подаваемого на вторичную обмотку, рассчитывается делением испытательного напряжения из таблицы 11 на коэффициент трансформации.

Примечание — при отсутствии у потребителя источника напряжения повышенной частоты испытание трансформаторов ЗНТОЛП индуктированным напряжением допускается проводить при частоте 50 Гц напряжением не выше 1,9·U_{ном} при длительности выдержки 1 мин. В течении всего испытания не должно происходить резких изменений тока, в частности - его увеличения.

Допускается испытание трансформаторов ЗНТОЛП проводить напряжением U_{н.Р}·√3 в соответствии с таблицей 12.

Таблица 12 – Допустимые испытательные напряжения ЗНТОЛП при частоте 50 Гц

Номинальное	Наибольшее рабочее	Напряжение в	Напряжение в
напряжение первичной	напряжение первичной	первичной обмотке	первичной обмотке
обмотки (U _{ном}), В	обмотки (U _{н.Р}), В	при 1,9·U _{ном} , В	при U _{н.Р} ∙√3, В
6000/v3 (3468)	4162	6600	7200
10000/√3 (5780)	6936	11000	12000

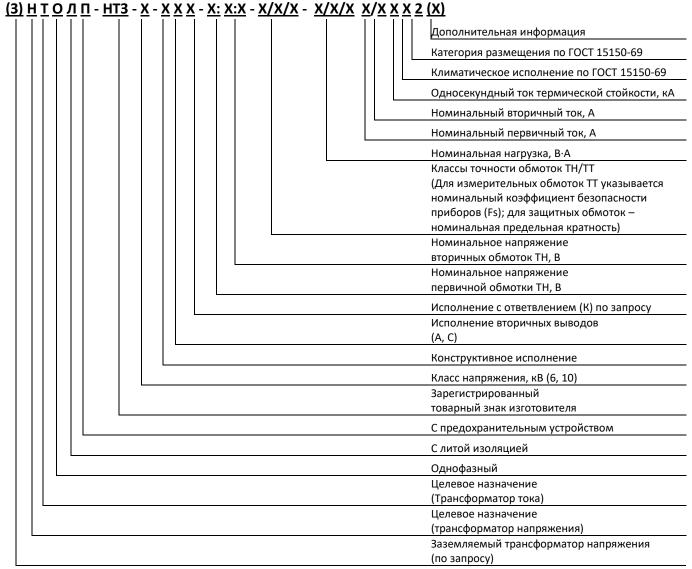
- 6.2) Испытание электрической прочности изоляции первичной обмотки комбинированных трансформаторов НТОЛП проводят в 3 этапа:
- 6.2.1) Испытательное напряжение, значение которого приведено в таблице 11, частотой 50 Гц прикладывается к закороченным выводам первичной обмотки «Л1/А» и «Х» и выдерживается в течение 1 минуты. При этом вторичные вывода «И1», «И2», «И3», « x_1 », « x_2 » и металлические части трансформатора должны быть заземлены.
- 6.2.2) Напряжение частотой 150-400 Гц подается со стороны первичной обмотки на вывод «X». Ввод «Л1/А» первичной обмотки, вторичные вывода «И1», «И2», «И3», « x_1 », « x_2 » и металлические части трансформатора при этом должны быть заземлены. Напряжение, значением $2 \cdot U_{\text{ном}}$, выдерживается в течение времени t, c, рассчитанного по формуле:

$$t = \frac{2 \cdot f_{\text{HOM}}}{f_{\text{HCII}}} \cdot 60,$$

где $f_{\mbox{\scriptsize HOM}}$ — номинальная частота, Гц; $f_{\mbox{\tiny ИСП}}$ — испытательная частота, Гц.

- 6.2.3) Испытание повторяется с подачей напряжения на ввод «Л1/А» и заземлением вывода «Х» первичной обмотки.
- 7) Измерение сопротивления обмоток трансформаторов постоянному току. Измерение производится мостом постоянного тока, имеющего класс точности не ниже 1. Измеренное значение сопротивления не должно отличаться от указанного в паспорте более, чем на 2 %.
 - 8) Измерение тока и потерь холостого хода трансформаторов проводят разными методами:
- 8.1) Измерение тока и потерь холостого хода комбинированных трансформаторов ЗНТОЛП проводится при напряжении $1,0\cdot U_{\text{ном}}$ и $1,9\cdot U_{\text{ном}}$ по методике ГОСТ 3484.1-88. Напряжение подаётся на выводы первой основной вторичной обмотки « a_1 », « x_1 », при этом выводы остальных вторичных обмоток разомкнуты, вывод «Х» первичной обмотки и металлические части трансформатора заземлены. Полученные значения не должны отличаться от значений, указанных в паспорте на изделие более, чем на 10 %.
- 8.2) Измерение тока и потерь холостого хода комбинированных трансформаторов НТОЛП проводится при напряжении 1,0·Uном по методике ГОСТ 3484.1-88. Напряжение подаётся на выводы первой основной вторичной обмотки « a_1 », « x_1 », при этом выводы всех остальных обмоток разомкнуты, металлические части трансформатора заземлены. Полученные значения не должны отличаться от значений, указанных в паспорте на изделие более, чем на 10 %.

Трансформаторы подлежат периодической поверке по методике ГОСТ 8.216-2011 и ГОСТ 8.217-2003. Межповерочный интервал — 8 лет.


Трансформаторы ремонту не подлежат.

Средняя наработка до отказа — 4.10^5 часов.

Средний срок службы – 30 лет.

8 Условное обозначение

Расшифровка условного обозначения трансформаторов:

комбинированного Пример записи обозначения трансформатора заземляемого, однофазного, электромагнитного, с литой изоляцией, с предохранительным устройством изготовленного по ТУ 3414-009-30425794-2013, класса напряжения 10 кВ, конструктивного варианта исполнения «1», исполнения вторичных выводов расположенных параллельно установочной поверхности «А», с номинальным напряжением первичной обмотки TH 10000/V3 В с двумя вторичными обмотками ТН (первая с номинальным напряжением 100/√3 В - для подключения цепей измерения с классом точности 0,5 и нагрузкой 75 В.А, вторая с номинальным напряжением 100/3 В - для подключения цепей защиты с классом точности 3 и нагрузкой 100 В·А) с вторичной обмоткой TT класса точности 0,5S с коэффициентом безопасности (Fs) 10 и нагрузкой 10 В·А для коммерческого учета на номинальный первичный ток 150 А, номинальный вторичный ток 5 А, с односекундным током термической стойкости 16 кА климатического исполнения «УХЛ», категории размещения 2 по ГОСТ 15150-69 при его заказе и в документации другого изделия:

Комбинированный трансформатор 3HTOЛП-HT3-10-1A-10000/V3:100/V3:100/3-0.5/3/0.5SFs10-75/100/10-150/5 16кА УХЛ2 ТУ 3414-009-30425794-2013

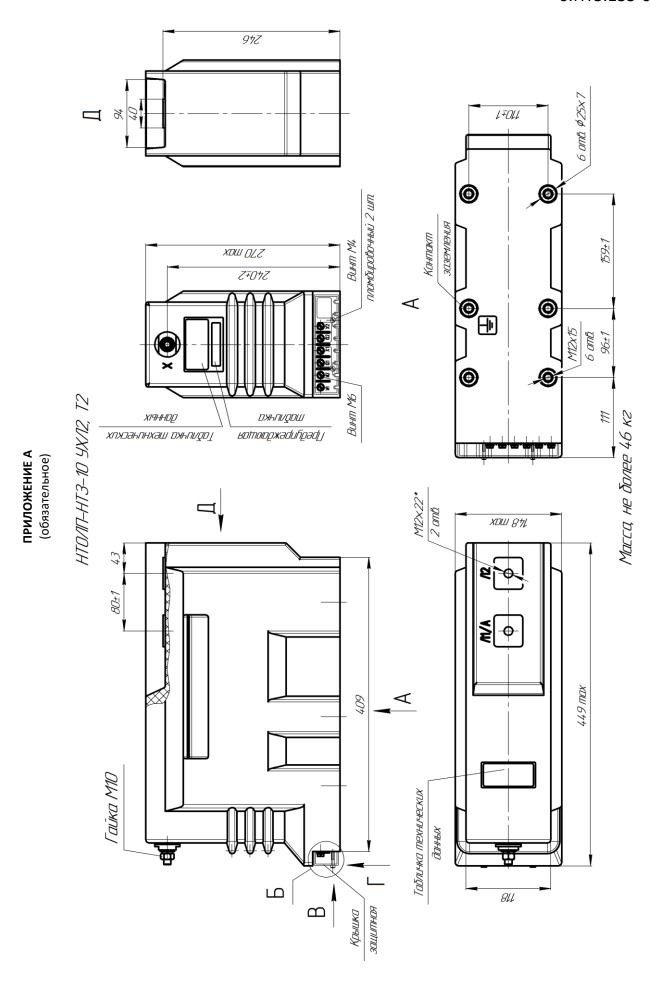


Рисунок А.1 — Габаритные, установочные, присоединительные размеры и масса трансформаторов НТОЛП-НТЗ-6(10)

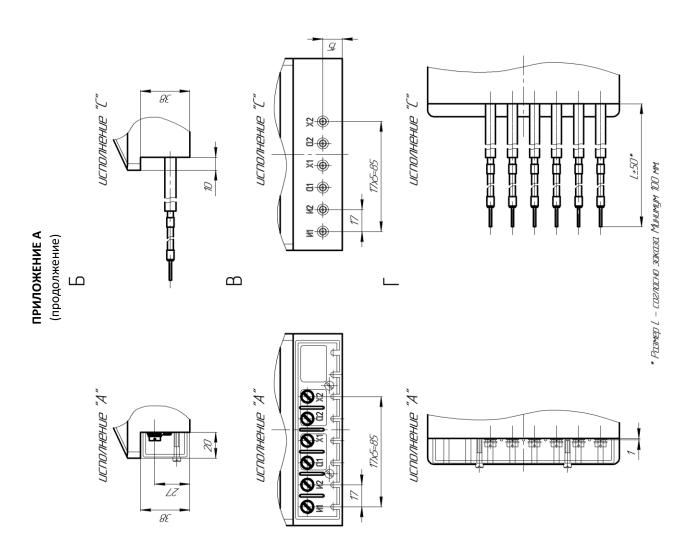


Рисунок А.2 – Варианты исполнения вторичных выводов НТОЛП-НТЗ-6(10)

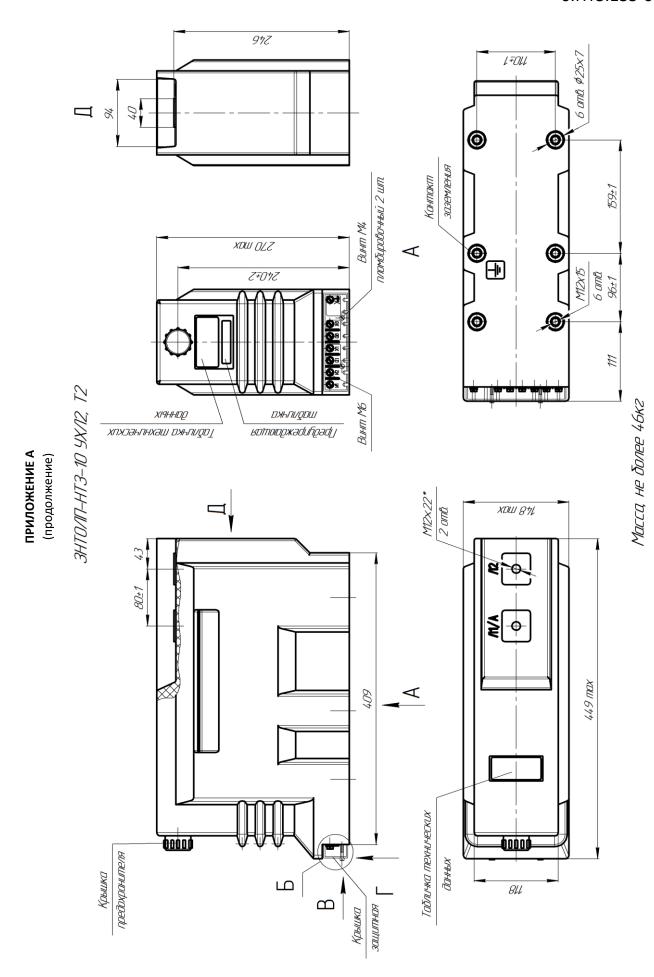


Рисунок А.3 — Габаритные, установочные, присоединительные размеры и масса трансформаторов ЗНТОЛП-НТ3-6(10)

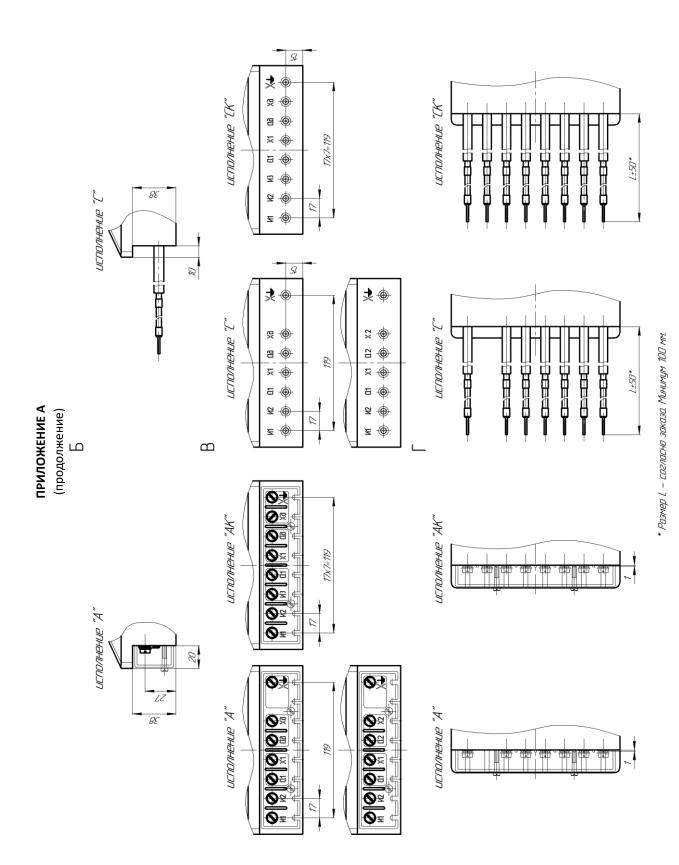


Рисунок А.4 — Варианты исполнения вторичных выводов ЗНТОЛП-НТЗ-6(10)

приложение б

Рисунок Б.1 — Схема электрическая принципиальная для трансформаторов НТОЛП-НТ3-6(10)

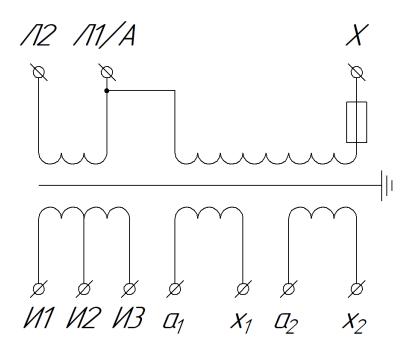


Рисунок Б.2 — Схема электрическая принципиальная для трансформаторов НТОЛП-НТ3-6(10) с ответвлением на вторичной обмотке трансформатора тока

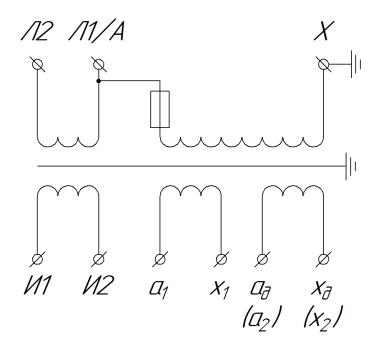


Рисунок Б.3 — Схема электрическая принципиальная для трансформаторов ЗНТОЛП-НТ3-6(10)

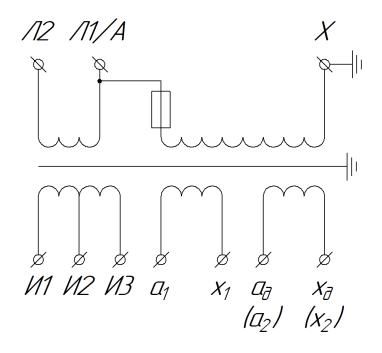


Рисунок Б.4 — Схема электрическая принципиальная для трансформаторов ЗНТОЛП-НТ3-6(10) с ответвлением на вторичной обмотке трансформатора тока